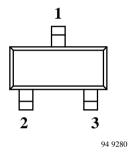
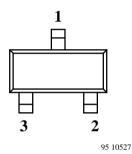
BFR 92 A / BFR 92 A R


Silicon NPN Planar RF Transistor


Applications

Wide band amplifier up to GHz range.

Features

- High power gain
- Low noise figure
- High transition frequency

BFR92A Marking Plastic case (SOT 23) 1= Collector; 2= Base; 3= Emitter BFR92AR Marking Plastic case (SOT 23R) 1= Collector; 2= Base; 3= Emitter

Absolute Maximum Ratings

Parameters	Symbol	Value	Unit
Collector-base voltage	V_{CBO}	20	V
Collector-emitter voltage	V _{CEO}	15	V
Emitter-base voltage	V_{EBO}	2	V
Collector current	I_{C}	30	mA
Total power dissipation $T_{amb} \le 60^{\circ}C$	P _{tot}	200	mW
Junction temperature	Tj	150	°C
Storage temperature range	T _{stg}	-65 to +150	°C

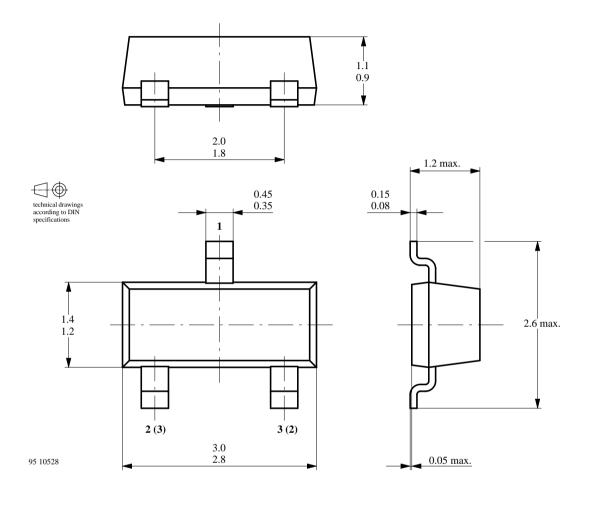
Maximum Thermal Resistance

Parameters	Symbol	Value	Unit
Junction ambient, mounted on glass fibre printed board			
$(25 \times 20 \times 1.5) \text{ mm}^3$, plated with 35 µm Cu	R_{thJA}	450	K/W

BFR 92 A / BFR 92 A R

Electrical DC Characteristics

 $T_{amb} = 25^{\circ}C$


Parameters / Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Collector-base cut-off current $V_{CB} = 10 \text{ V}, I_E = 0 \text{ A}$	I _{CBO}			50	nA
Collector-base breakdown voltage $I_C = 10 \mu A$	V _{(BR)CBO}	20			V
Collector-emitter breakdown voltage $I_C = 2 \text{ mA}, I_B = 0 \text{ A}$	V _{(BR)CEO}	15			V
	V _{(BR)EBO}	2			V
DC forward current transfer ratio $V_{CE} = 10 \text{ V}, I_C = 14 \text{ mA}$	h _{FE}	65	100	150	

Electrical AC Characteristics

 $T_{amb} = 25\,^{\circ}C$

Parameters / Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Transition frequency $V_{CE} = 10 \text{ V}, f = 500 \text{ MHz}, I_C = 14 \text{ mA}$	f_{T}	5.0	6.0		GHz
Collector-base capacitance $V_{CB} = 10 \text{ V}, f = 1 \text{ MHz}$	C _{cb}		0.3		pF
Collector-emitter capacitance $V_{CE} = 10 \text{ V}, f = 1 \text{ MHz}$	C _{ce}		0.15		pF
Emitter-base capacitance $V_{EB} = 0.5 \text{ V}, f = 1 \text{ MHz}$	C _{eb}		0.65		pF
Noise figure $V_{CE} = 10 \text{ V}, I_C = 2 \text{ mA}, R_S = 50 \Omega, f = 800 \text{ MHz}$	F _e		1.8		dB
Power gain $V_{CE} = 10 \text{ V}, R_S = 50 \Omega, R_L = R_{Lopt}, \\ I_C = 14 \text{ mA}, f = 800 \text{ MHz}$	G _{pe}		16		dB
	$v_1 = v_2$		120		mV
Third order intercept point $V_{CE} = 10 \text{ V}, I_C = 14 \text{ mA}, f = 800 \text{ MHz}$	IP ₃		24		dBm

Dimensions in mm

TEMIC

BFR 92 A / BFR 92 A R

TELEFUNKEN Semiconductors

Ozone Depleting Substances Policy Statement

It is the policy of TEMIC TELEFUNKEN microelectronic GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

TEMIC TELEFUNKEN microelectronic GmbH semiconductor division has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

TEMIC can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes without further notice to improve technical design.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by customer. Should Buyer use TEMIC products for any unintended or unauthorized application, Buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax Number: 49 (0)7131 67 2423